skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelly-Gorham, Molly Rose"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is well known that interdependence between electric power systems and other infrastructures can impact energy reliability and resilience, but it is less clear which particular interactions have the most impact. There is a need for methods that can rank the relative importance of these interdependencies. This paper describes a new tool for measuring resilience and ranking interactions. This tool, known as Computing Resilience of Infrastructure Simulation Platform (CRISP), samples from historical utility data to avoid many of the assumptions required for simulation-based approaches to resilience quantification. This paper applies CRISP to rank the relative importance of four types of interdependence (natural gas supply, communication systems, nuclear generation recovery, and a generic restoration delay) in two test cases: the IEEE 39-bus test case and a 6394-bus model of the New England/New York power grid. The results confirm industry studies suggesting that a loss of the natural gas system is the most severe specific interdependence faced by this region. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Given increasing risk from climate-induced natural hazards, there is growing interest in the development of methods that can quantitatively measure resilience in power systems. This work quantifies resilience in electric power transmission networks in a new and comprehensive way that can represent the multiple processes of resilience. A novel aspect of this approach is the use of empirical data to develop the probability distributions that drive the computational model. This paper demonstrates the approach by measuring the impact of one potential improvement to a power system. Specifically, we measure the impact of additional distributed generation (DG) on power system resilience, and find that DG can substantially increase resilience. 
    more » « less